注册电气工程师考试真题精选及答案5节

发布时间:2021-08-06
注册电气工程师考试真题精选及答案5节

注册电气工程师考试真题精选及答案5节 第1节


某电力用户设35/10kV变电站。10kV系统为中性点不接地系统,下设有3个10kV车间变电所,其中主要是二级负荷,其供电系统图和已知条件如下:
1)35kV线路电源侧短路容量无限大。
2)35/10kV变电站为重要变电所。
3)35/10kV变电站10kV母线短路容量104MV*A。
4)A、B和C车间变电所10kV母线短路容量分别102MV*A、100MV*A、39MV*A。
5)车间B变电所3号变压器额定电压10/0. 4kV,其低压侧母线三相短路超瞬态电流为16330A。
6)35/10kV变电站正常时间

A、B和C车间变电所供电的3个10kV出线及负载的单相对地电容电流分别为2.9人、1.3人、0.7人,并假设各出线及负载的三相对地电容电流对称。
7)保护继电器接线系数取1。

请回答下列问题。
若车间B的3号变压器高压侧装设电流速断保护,电流互感器变比为50/5、过流继电器为DL型、过负荷系数取1.4。求变压器速断保护装置动作整定电流和灵敏系数各为多少? ( )
(A)85A,5.6 (B)7A,1.9
(C)8A,2.2 (D)7A,2.5

答案:A
解析:
《工业与民用配电设计手册》(第三版)P297表7-3。


判断下列哪种情况或设备应校验热稳定以及动稳定?(  )

A. 装设在电流互感器回路中的裸导线和电器
B. 装设在电压互感器回路中的裸导线和电器
C. 用熔断器保护的电器
D. 电缆

答案:A
解析:
装设在电压互感器回路中的设备不用校验动稳定及热稳定,因为系统发生短路时,短路电流并不通过这些设备,只有串联设备才需要校验动稳定及热稳定性。熔断器不需要校验热稳定性,电缆不需要校验动稳定性。


在35~llOkV变电所中,一般情况下,主控制室、继电器室及通信室楼面活荷载 标准值应为( )。如电缆层的电缆吊在主控室或继电器室的楼板上时,应按实际发生的最 大荷载考虑。

A. 2. OkN/m2 ; B. 3. OkN/m2 ; C. 4. OkN/m2 ; D. 5. OkN/m2

答案:C
解析:



A.
B.
C.
D.

答案:C
解析:


下列有关交流电动机反接制动的描述,哪些是正确的?()
(A)反接制动时,电动机转子电压很高,有很大制动电流,为限制反接电流,必须在转子中再串联反接电阻
(B)能量消耗不大,较经济
(C)制动转矩较大且基本稳定
(D)笼型电动机因转子不能接入外界电阻,为防止制动电流过大而烧毁电动机,只有小功率(10kW以下)电动机才能采用反接制动

答案:A,C,D
解析:
依据:《钢铁企业电力设计手册》(下册)P96表24-7。


注册电气工程师考试真题精选及答案5节 第2节


Ip=0.5,短路发生在发电机电压母线时,短路电流的最大有效值I im为()。
(A)0.81(B)0.755 (C)0.78 (D)0.5

答案:A
解析:


已知某激励信号u(t)=1.732sin(314t+30°)V,由此可知该信号的有效值、频率及初相角分别为( )。

A.1V,314rad/s,30°
B.1.732V,0.02s,30°
C.1.225V,50Hz,30°
D.1.732V,314rad/s,30°

答案:C
解析:
根据已知正弦函数可得:Um=1.732V,ω=314rad/s,φi=30°,所以U=1.225V,T=0.02s,f=50Hz,φi=30°因此,本题答案为C




答案:D
解析:


在高压网中线路串联电容器的目的是(  )。

A. 补偿系统容性无功调压
B. 补偿系统感性无功调压
C. 通过减少线路电抗调压
D. 通过减少线路电抗提高输送容量

答案:D
解析:
在长距离输电时线路电感远大于电阻,而在输电线路中串联电容可以有效抵消线路电感,相当于缩短了线路长度,提高了线路输送容量,对补偿无功功率,减少电压降,提高系统稳定性都有作用。由于低压系统中电流较大,串联电容器很少使用。




答案:D
解析:


注册电气工程师考试真题精选及答案5节 第3节


圆管层流的平均流速是4m/s,其管中心处的最大流速为( )m/s。
A. 8 B. 4 C. 16 D. 10

答案:A
解析:
提示:层流圆管速度分布为抛物线分布,中心最大流速是平均流速的2倍。



答案:B
解析:


某项目初期投资150万元,年运营成本90万元,寿命期5年,寿命期末回收残值20万元,企业基准折现率10%,则该项目的费用现值为( )万元。

A.478.75
B.503.59
C.511.63
D.534.95

答案:A
解析:
该项目的费用现值为:P=150+90×(P/A,10%,5)-20×(P/F,10%,5)=478.75(万元)。



A.等于120V
B.等于4.8V
C.等于0.6V
D.无法计算

答案:A
解析:


危险影响计算应符合()规定。
A.送电线路对地下电信电缆线路同时产生感性耦合和阻性耦合两种影响时,应按两者平方和的平方根计算合成影响;
B.对电气化铁道的铁路信号线路宜考虑危险影响;
C.送电线路对地下电信电缆线路应考虑地电流影响,并应按中性点不直接接地的送电线路发生一相接地短路故障时,流入或流出电力设备接地装置的短路电流计算;
D.带有避雷线的送电线路,可考虑避雷线的返回电流效应来计算避雷线的屏蔽系数。

答案:A,D
解析:


注册电气工程师考试真题精选及答案5节 第4节


某变电站的500kV线路为关口计量点,拟装设专门的0.2级计费电能表,线路电流互感器和电压互感器均设有专门的计量用二次绕组。其中,线路电压互感器为三相星形接线,电压互感器一次电压为500A/√3kV,二次星形电压为0.1/√3kV。
下列电压互感器和电流互感器的准确度配置满足要求的组为( )。
A.电压互感器采用0.2级,电流互感器采用0.2S级。
B.电压互感器采用0,2级,电流互感器采用0.5S级。
C.电压互感器采用0.5级,电流互感器采用0.2S级。
D.电压互感器采用0.5级,电流互感器采用0.5S级。

答案:A
解析:
解答过程:
《电测量及电能计量装置设计技术规程》(DL/T5137—2001)6.1.2节及表6.1.3的相关可判断答案为A。


正弦电压u=100cos(ωt+30°)V对应的有效值为( )。


答案:B
解析:
对任意正弦量u=Umcos(ωt+φ0),其中Um称为正弦量u的振幅,为正弦量的最大值,最大值与有效值有



倍的关系,则:


一定量理想气体,从状态A开始,分别经历等压、等温、绝热三种过程(AB、 AC、AD),其容积由V1都膨胀到2V1,其中( )。
A.气体内能增加的是等压过程,气体内能减少的是等温过程
B.气体内能增加的是绝热过程,气体内能减少的是等压过程
C.气体内能增加的是等压过程,气体内能减少的是绝热过程
D.气体内能增加的是绝热过程,气体内能减少的是等温过程

答案:C
解析:
提示:画p-V图(见图2-15),比较三种过程,等压过程做功最大,绝热过程做功最小;等压过程温度升高,内能增大,绝热过程温度降低,内能减小。



llOkV及以上系统的接地方式应采用( )。

A.经消弧线圈接地; B高电阻接地;
C.低电阻接地; D.有效接地。

答案:D
解析:
根据DL/T 620—1997《交流电气装置的过电压保护和绝缘配合》的1.1.1,110-500kV系统应该采用有效接地方式。


( )情况可装设备用电源或备用设备的自动投入装置。

A.由双申源供电的变电站和配电所,其中一个电源经常断开作为备用;
B.发电厂、变电站和配电所内有互为备用的母线段;
C.发电厂、变电站内有备用变压器;
D.变电站内有两台站用变压器.

答案:A,B,C,D
解析:


注册电气工程师考试真题精选及答案5节 第5节


关于行政许可听证,下列说法正确的是( )。
A.申请人、利害关系人认为主持人与行政许可事项有直接利害关系的,有权申请回避
B.听证举行前,行政机关应当一律对外公告
C.举行听证时,审查该行政许可申请的工作人员可以提供审查意见的证据、理由,申请 人、利害关系人应当提出证据,并进行申辩和质证
D.申请人、利害关系人要求行政机关组织听证的,应当承担听证费用

答案:A
解析:
。提示:行政许可听证免费,审查工作人员应当提出证据、理由等,听证只需要告 知当事人、利害关系人即可。


十进制的数256.625,用八进制表示则是(  )。

A、412.5
B、326.5
C、418.8
D、400.5

答案:D
解析:
首先将其化为二进制表达形式,



则256=10000000(2),同理,



,即256.625=10000000.101(2),将其每三位划分为八进制的1位,即100 000 000.101(2)=400.5则其八进制表达式为400.5。


已知平面π过点(1,1,0)、(0,0,1), (0,1,1),则与平面π垂直且过点(1,1,1)的直线的对称方程为( )。

答案:B
解析:
正确答案是B。
提示:平面π的法向量,所求直线的方向向量为i+k ,故应选B。


一台隐极同步发电机并于无穷大电网运行,其每相额定电压UNP=6.3kV,额定电流IN=572A,cosψN=0.8(滞后),Xc=5.3Ω,不计定子电阻,Y接法。当空载电动势E0=4.56kV时,该发电机的过载倍数、为()。
(A)1.88 (B)3.26 (C)2.32 (D)2.51

答案:A
解析:


现有10张奖券,其中8张为贰元,2张为伍元,某人从中随机地无放回地抽取3张,则此人得奖金额的数学期望为( )。
A. 6 B. 12 C. 7.8 D. 9

答案:C
解析:
提示:X表示抽取贰元的张数,则X= 1, 2, 3,先求X的分布律,再求数学期望。